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Aeroelastic Response and Flutter of Swept Aircraft Wings
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A unified approach of stability and aeroelastic response of swept aircraft wings in an incompressible flow is
developed. To this end, the indicial function concept in time and frequency domains is used, and on this basis
the flutter instability and subcritical aeroelastic response to arbitrary time-dependent external excitation are
analyzed. In addition, an original representation of the aeroelastic response in the phase space is presented, and
the implicationsof the related results toward determining the flutter instability in flight are emphasized. Validations
of selected results against the theoretical and experimental predictions are supplied, and pertinent conclusions are

outlined.
Nomenclature

a, = dimensionless elastic axis position measured
from the midchord, positive aft

C(k), F(k), = Theodorsen’s function and its real and

G (k) imaginary parts, respectively

Cra, = local lift-curve slope for a section normal to the
elastic axis in steady flow

c, = chord length of wing, normal to the
elastic axis, 2b,,

s fa = plunging and pitching decoupled eigenmodes,
respectively

H;, A, = dimensionless unsteady aerodynamic
coefficients

h,hy, & = plunging displacement, its amplitude, and
dimensionless counterpart, i /b, respectively

I, 7, = mass moment of inertia per unit span wing
and the dimensionlessradius of gyration,
(I,/mb*)'/%, respectively

i = imaginary unit, v/—1

L, M, = dimensionless unsteady aerodynamic complex
coefficients

aLla, aM, = total lift and moment about the elastic axis
per unit span of the swept wing

L1, = overpressure due to an N-wave shock pulse
and its dimensionless counterpart, Lb, /mUnz,
respectively

L,s = Laplace operator and Laplace variable,
respectively

l = wing semispan measured along the
midchord line

l,, m, = dimensionless aerodynamic lift, L,b,/mU?,
and moment, M, b2 /I,U?, respectively

m, [ = wing mass per unit length and wing/air mass
ratio, m/mpb?, respectively

N = load factor, 1+h"/g
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Subscripts

¢, nc

n
A

peak reflected pressure in excess of the ambient
one and its dimensionless counterpart
P,b,/mU?, respectively

shock pulse length factor

static unbalance about the elastic axis and its
dimensionless counterpart, S, /mb,, respectively
time variable

freestream speed, its component normal to the
elastic axis, and the dimensionless counterpart,
U, /b,w,, respectively

downwash velocity

coordinates parallel and perpendicular to
freestream direction

chordwise (normal to the elastic axis)

and spanwise (along the elastic axis) coordinates
transverse normal coordinate to the midplane of
the wing and the vertical displacementin z
direction, respectively

twist angle about the elastic axis and its
amplitude, respectively

tracer quantity

structural damping ratio in plunging, ¢, /2mawy,,
and in pitching, ¢, /21,w,, respectively
dimensionless coordinate along the wing

span, y/!1

sweep angle (positive for swept back)
spanwise rate of change of twist and bending,
respectively

air density

dimensionlesstime, U,t /b,

dimensionless positive phase duration of the
pulse, measured from the time of the arrival
parameter identifying the propagation speed

of the gust V, with respectto V,

Wagner’s function in time and

Laplace domains, respectively

circular and reduced frequencies, wb, /U,
respectively

plunging-pitching frequency ratio, wj, /w,
uncoupled frequency in plunging, (K, /m)'/?,
and pitching, (K, /1,)'/?, respectively

circulatory and noncirculatory terms of lift
and aerodynamic moment, respectively
quantity normal to the elastic axis
quantity associated with the swept wing
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Superscripts

A = variablesin Laplace transformed space
./ = derivatives with respect to the time ¢ and the
dimensionless time , respectively

I. Introduction

I N this paper, the conceptof indicial' = functionsin time and fre-
quency domains is used to determine, for incompressible flow-
fields, the associated unsteady aerodynamic derivatives for swept
lifting surfaces. Such a treatment of the problem enables one to
approach, in a unified way, both the aeroelastic response in the
subcritical flight speed regime to arbitrary time-dependent external
excitations (such as explosive airblasts and sonic boom*?) and the
flutter instability of swept wings. In this paper, both problems are
addressed.

As a byproduct of this analysis, a closed-form solution of un-
steady aerodynamic derivatives, including corrections for aspect
ratio, sweep angle, and camber effect, is obtained. This modified
version can easily be implemented and used in aeroelasticresponse
problems including flutter analyses.

The unsteady aerodynamic lift and moment in the incompress-
ible flight speed regime are expressed for the swept aircraft wing
in the time and frequency domains by the use of Wagner’s and
Theodorsen’s functions, respectively. For aeroelastic response, it
is only necessary to express the lift and moment via the indicial
Wagner’s function. Toward the approach of the flutter problem,
two avenues have been pursued here, namely, that based on com-
plex eigenvalue analysis and on aeroelastic response. Whereas
Theodorsen’s function helps with the conversion of the expressions
of both the aerodynamicloads and of unsteady aerodynamicderiva-
tives in the frequency domain, their Laplace domain counterparts
are directly applicable in aeroelastic response problems.®’

Within this unified approach, the flutter instability from the data
related to the aeroelastic response will be evaluated.

Herein, a swept aircraft wing (Figs. 1 and 2) that features the
plunging / and pitching & degrees of freedom and that is ex-
posed to a two-dimensional incompressible flow is used. The con-
cept of swept wing generated by rotation was adopted (Fig. 1),
and the wing structure is modeled within the Bernoulli-Euler
hypothesis.

Actual root
/ Effective root

~

Elastic axis

Fig.1 Nonuniform swept wing.

Fig.2 Airfoil section. U,

As a basic assumption, the oscillatory motion is represented as a
combinationof the uncoupledbending and twisting vibratingmodes
of the wing.

In connectionwith the variousloads interveningin the aeroelastic
governingequations, the distinctionbetween unsteady aerodynamic
and gust loads, on one hand, and blast loads, on the other hand, was
clearly described by Bisplinghoffet al.,' and this point of view was
adopted in this paper as well.

The results of this approachare validif the blastpulses are charac-
terized by smallto moderateloadingintensities. As aresult, although
these are not able to cause severe damage, the induced vibration can
lead to failure by fatigue of the structure. For most problems of this
nature, these conditions are likely to be satisfied unless the wing
structure is far away from the center of the blast/sonic boom. As
was clearly stated in Ref. 8, the limiting distance depends on the
magnitude of the blast, the orientationrelative to the wing structure,
the speed of the aircraft, and the geometry of the wing.

As was shown by Yates,” the use of modified strip theory aerody-
namics provides very good results for moderate to large aspectratio
wings and for moderate sweep angles, up to A =60 deg. Within
the present aerodynamic modeling, the corrections involving the
lift-curve slope (which are related to the sweep angle and aspect ra-
tio), are extracted from the steady aerodynamics of flat rigid wings.
Moreover, in contrast to the usual procedure of discarding the cam-
ber deformation of sections normal to the elastic axis, this effect,
which becomes prominent for small-aspect-ratio wings, has been
taken into account.

Because in the present work a uniform swept wing in an incom-
pressible flowfield is considered, Yates’s modified two-dimensional
strip theory involves, as the improvement,only the expressionof the
three-dimensionalsection lift-curve slope. The aerodynamic center
is located at the quarter chord on each cross section of the wing.

Although here a fixed lift-curve slope in the spanwise direction
was used, extension to a spanwise-varyinglift-curve slope based on
steady three-dimensional solutions for the wing is straightforward.
The approach and results of aeroelastic response to gust and blast
loads can be useful in the preliminary design and are likely to con-
tribute to a better understanding of the implications of a number of
parameters related to the wing geometry and the characteristics of
the blast on the dynamic response of the wing. Moreover, exten-
sion of this methodology toward the unified nonlinear aeroelastic
approach by using nonlinear aerodynamicindicial functions consti-
tutes the next goal of this research.

II. Preliminaries

As shown in Ref. 10, for zero initial conditions, the unsteady
aerodynamicloads can be converted from the time to the frequency
domain via a Laplace transform. This results in the possibility of
using the correspondence s — ik, to convert the unsteady aerody-
namic load from the time to the frequency domain, where s and
k, are the Laplace transform variable and the reduced frequency,
respectively. The Laplace transform operator -£ is defined as

x(~)=/ ()e*Tdr 1)
0

whereas Wagner’s function ¢ (7) is connected with Theodorsen’s
function C (k,), via a Laplace transform, as

C(k,) = F(k,) +iG(k,) = ikn/ ¢ (r)e ™ dr = ik, D (ik,)
0

2)
and vice versa
¢(r) = L HC(ky)/iky}. Re(ik,) > 0 3)
Using the correspondences <> ik,, we can also write
<I>(ikn)_k = f d(r)e T dr = D(s) @)
ikp — s 0

Use of this relationship enables one to obtain the full expres-
sion of unsteady aerodynamic derivatives in terms of Theodorsen’s
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circulation function C(k,) and its real and imaginary components
F (k,) and G (k,) in the frequency domain, or their counterpartin the
Laplace domain, as well. Note that the reduced frequency parameter
k, for swept and straight wings coincide:

b = wb,  wbcos A

U, UxcosA Uy

=k, iot =ikt (5)

This implies that the indicial Wagner’s function ¢ (r) remains
invariant to any change of the sweep angle.

III. Analytical Developments
For swept wings in an incompressible flowfield, the total lift per
unit span can be expressed in a way similar to that reported for a
two-dimensional airfoil by Fung'!:

ALa(yv 1) = ALC(.)_]1 1)+ ALner (ﬁy 1)+ Aan2(.)_77 1)+ ALnC3(.)_]1 1)
(6)

Herein, the indices ¢ and nc identify the various contributions asso-
ciated with the circulatory and noncirculatory terms, respectively.
With similar notations, the total moment per unit span about the
elastic axis is

AM 3, D) =AM, )+ aMoc1 (3,0 + aMy2 (3, 1) + a M3 (., 1)
+AMnca(.)_71 t) (7)

A M, (¥, t) being associated with the apparent moment of inertia.!!
The liftis positive upward, whereas the moment is positive nose up.
For the sake of convenience, the plunging coordinate is positive
downward (see Fig. 2). When the vertical displacement Z of a point
on the centerline of the cross section of the wing is expressed as'?

Z(x,y, 1) =h(y, 1)+ Xa(y, 1) ®)

whereh =h(y, t) anda =« (Y, t) are the displacementsin plunging
and pitching, respectively, and one assumes that the origin of the
X axis coincides with the elastic center, the downwash velocity w
normal to the lifting surface becomes

_ o 0Z 0Z
wx,y, ) =wX,y, 1) =—+Us— )
at 0x

The in-plane chordwise coordinate X normal to the elastic axis (see
Figs. 1 and 2) can be expressed as

i=b,(~a,) (10)

Consequently,by use of the dimensionlesstime 7 (=U,t/b,),Eq. (9)
becomes

/

- h oh
wx,y, 1) =U,| —+a+ —tan A
b, ay

1 , da
+(§—an)(a +b,,a—ytanA)i| (11)

where b, is the half-chord of the airfoil, U, is the component of the
flow speed, both normal to the elastic axis, and (-)’ = 3(-)/dt. The
underlined quantity in Eq. (11) is related to the wing camber effect.
Because its effect is rather small for high aspect ratio wings, it is
usually discarded in the specialized literature."'3> However, herein,
this effect will be taken into consideration.

In the following sections, the unsteady aerodynamic loads are
obtained in the time domain (Sec. III.A.1) and via the use of the
Laplace transform in the frequency domain (Sec. ITI.A.2). The un-
steady aerodynamic derivatives are expressed in the frequency do-
main (Appendix A) and convertedin the Laplace domain to be used
toward the flutter evaluation.

A. Unsteady Aerodynamic Loads in Incompressible Flow
1. Time Domain

The circulatory component of the lift, expressed in terms of
Wagner’s indicial function ¢ (t) (referred also to as heredity func-
tion), obtained in the time domain, is'?

" Zh

— T a
aLe(y, 1) = —CLa,,bnprf ¢ (t — 10) |:b_ +o +

- tan A
Yot

1 . 0’
+(5 —a,,) (a +b, PETES tanA)i| dr, (12)

The aerodynamic noncirculatory components, using the dimen-
sionless time, are expressed as

1
ALl (9, 7) = —EcLa,,pr[h” —a,b,a’] (13a)

1
Alna (¥, T) = _ECLanIOUnzbna/ (13b)

1 ’
ALwa (3. 7) = =5 Cuo, pUD, tanA[(a,- )7 48

0 1 A
+8,.—(i tan A | + =a,Cr,, pUb  tan A | (8, + N —
ay 2 b

n

oA
+ 8,— tan Ai| (13c¢)
ay

By the use of the expression of the lift [Eq. (6)], the equation for the
moment [Eq. (7)] can be cast as

AMa(.)_lv t) = _(% +an)bnALc(.)_77 t) - anbnAanl (.)_71 t)

+ (4 = a)barLuca (3. 1) + aMus (5. 1) + aMoc (5, 1) (14)

in which, using the dimensionless time, the last two noncirculatory
components are expressed as

_ 1 1
AMnC3(y7 T) = __CLa:pr2b3_)‘ tan A — anbnALnCB

2 )
1 by N
——CL,pU?bt tan A| (8, + 1)— + §,— tan A (15)
16 b, ay
35 1 2772 011
AMy (¥, 7) = __IOCLa,,anna (16)

16

Herein, the spanwise rates of change of bending and twist, o and
A, respectively, are defined as 0 =9h/dy and L = da/dy. In these
equations,and in the following ones, the terms affected by the tracer
8, are generated by the last underlined term in the expression of the
downwash velocity [Eq. (11)]. When these terms are discarded,
8, =0, and when they are retained, §, = 1.

Substituting Eqs. (12) and (13) into Eq. (6) and Egs. (12), (13),
(15), and (16) into Eq. (14) results in the unsteady lift and aerody-
namic moment expressed in the time domain. To facilitate the com-
putations, the available approximate expressions for ¢ () and for
C (k) (Refs. 11 and 14-18) can be used in the Laplace transformed
space. Alternatively,an approximationin terms of exponentialpoly-
nomials or quasi polynomials can be applied for this case as well.
In the case of the supersonicunsteady aerodynamics, the advantage
of using such representations was emphasized in Ref. 19. In our
numerical simulation, Jones’s approximation of Wagner’s function
was used (see Ref. 11).

The expressions of lift and aerodynamic moment in the time do-
main, 5 L,(y, t) and y M, (¥, 7), can be used to determine the sub-
critical aeroelastic response of swept wings. However, when the
aeroelastic response of wings to time-dependent external excita-
tions is required, the unsteady aerodynamic loads oL, and A M,
have to be supplemented by those corresponding to the involved
pulses. This will be considerednext, and an illustrationof the capa-
bilities provided by this method will be presented.
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2. Frequency and Laplace Domains

A number of steps enabling one to express the unsteady lift and
moment in the frequency and Laplace domains should be imple-
mented. To this end, the following sequence of operationsis applied:
1) replace s — ik, in Eqgs. (6) and (7) converted to Laplace trans-
formed space, 2) use the relationshipbetween Laplace transform of
Wagner and Theodorsen’s functions [Eq. (2)], and 3) represent the
time dependence of displacement and aerodynamic quantities as

@y, 1) = fu(Pa(r, k) = fu(age™* (17a)
h(3,7) = fi(Mh(T, k) = fi(Fhoe™ (17b)
aLa(3 Ky, ) = A Lo (5, ky)e™ (17¢)
AMo (3, Kk, T) = A Mo (3, ke (17d)

In this analysis f,(y) and f,(y) are chosen to be the decoupled
eigenmodes in plunging and twist of the wing structure and are
determined to fulfill the boundary conditions identically. These are

expressed as
H() =F, (77 = %) =C, [%«mﬂm

— cosh 81n) + sinh By — sin ﬂlni| (18)
Ja() = Fu (n = %) = Casinfon (19)

where, for the first bending and torsion eigenmodes, we have
B1=0.59697 and B, =7 /2. The constants C; and C, are chosen
to normalize f,(y) and f,()), to get the unitary maximum deflec-
tion at the wing tip. The uncoupled first bending and torsion mode
shapes are needed for the evaluations of the terms in Eqs. (A1-A8)
and are displayedin Ref. 20. The use of uncoupled modes in flutter
calculationsis discussed in detail in Ref. 12, among others, and this
methodology will be used here.

B. Modified Unsteady Aerodynamic Derivatives

In this section, a closed-form solution of the modified unsteady
aerodynamic coefficients for swept wings, which represent an
amended version of those in Refs. 1 and 12, have been derived,
and their use in the process of the unified aeroelastic formulation
of flutter and aeroelastic response of swept aircraft wings has been
addressed.

A careful inspection of equations for lift and moment expressed
in the time domain [Egs. (7) and (8)] suggests the following repre-
sentation of these quantities:

AL, ki, T) = LpU22b, [k, Hi (' /b,) + k, Hye!
+k2Hsa + k2Hy(h/b,) + Hsa" + Hy(h" /b,)] (20
AM (3, ky ) = LpU22b2 [k, A\ (W [b,) + K, Ased

+k2Asa + K2 Ay(h/b,) + Asa” + Ag(h" /b,)] 1)

In these equations H; and A; denote the dimensionless unsteady
aerodynamiccoefficients, whereas k,, hasbeenincludedto renderthe
quantitiesin bracketsnondimensional.In a restricted context,such a
mixed form of the lift and moment was used in Refs. 21 and 22. Un-
der the assumption of harmonic time dependence of displacements
quantities, the frequency-domain counterpart of Egs. (20-21), ex-
pressed in compact form, becomes

aL.(3,k,) = pUZK2b,[(ho/b,)L1 + L] (22a)
AM, (3, k,) = pUZK2b2[(ho/b)M, + agM,]  (22b)

nn"n

where the unsteady aerodynamic complex coefficients L; and M;
can be expressed in terms of unsteady aerodynamic derivatives as

Ll :iﬁ1+ﬁ4, Lzzll:lz‘f‘l:lz (23a)
Ml :iA1+A4, M221A2+A3 (23b)

where, for the sake of convenience,these are written as

A, = H,, A, = H, (24a)
Hy = (H; — Hs), Hy=(Hy—Hy)  (24b)
A=A, A=A, (24¢)
Ay = (A; — Ay), Ay =(Ay— Ag) (24d)

The closed-formsolutionsfor the unsteady aerodynamicderivatives
inthe frequency domain for swept wings are obtained from Egs. (22)
and are expressed in terms of Wagner’s function ® (ik, ). When the
real and the imaginary parts of these expressions are separated, the
unsteady aerodynamicderivativesare obtainedin the formdisplayed
in Appendix A. These include the correction for the aspect ratio,
sweep angle, and also the spanwise rates of change of bending and
twist, o and A. For straight wings, these terms become immaterial.

Equations (20) and (21) are used in two contexts, namely, in the
frequency and the Laplace space domains. In the former case, the
aerodynamic derivatives H; and A; have to be used in accordance
with Eqs. (A1-A8). This form of the aerodynamic loads will be
used to determine the flutter instability via the solution of a complex
eigenvalue problem. In the latter case, Eqs. (20) and (21) are used
in conjunction with Eqs. (A1-A8), converted to Laplace space do-
main using the relationships presented earlier. In this case, the gov-
erning equations, including the aerodynamic, blast, and gust loads,
are converted to an algebraic system of equations in the Laplace
transformed space. This formulation of governing equation enables
one to address both the aeroelastic response to blast and gust loads
and also the flutter instability.

Notice that the flutter analysis can also be conducted in the
Laplace space domain. In this case, classical methods such as U-g
or p—k methods can be used.

1 Sonic-Boom r=2
Ly
P,
0.5
Positive
Phase
0 0
= . T, T
Negative P
Phase
-0.5
1
-5 0 5 10 15 20 25
a) Dimensionless Time, T
1 Blast Load r=1
Ly
Pm
0.5
0
=0 T, T
-0.5
1
-5 [} 5 10 15 20 25
b) Dimensionless Time, t

Fig.3 Pressure pulses for a) sonic boom and b) triangular blast.
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C. Aeroelastic Response and Flutter Instability Derived from the
Subcritical Aeroelastic Response

An application of the flutter instability and of the aeroelastic re-
sponse of a swept wing to blast and sonic-boom pressure pulses
is considered next. The aeroelastic governing system pertinent to
swept wings featuring plunging and twisting degrees of freedom® '?
and exposed to blast pressure pulses is expressed as

d*w 0%w 0’
El— — = S——-L,(y,t)=L,(y,t 25
85]4 +m 912 y 912 (y ) [(y ) ( )
0’ 02w 0%«
GI== Sy——-1,—-M,(y,1) =0 26
Rl i AGD) (26)
For the cantilevered wing, the related boundary conditions are
- dw(y, 1)
|:w(y, 1) = - a(y, f):| =0
Y §=0
2w(y, t Bw(y, t da(y, t
WG PG w6l
0y? 0y3 0y .

By the use of shape functions, given by Eqs. (18) and (19), the
aeroelastic governing equations in dimensionless form become

£"(1) + Xa" (7) + 28 (0/ ViDE (1)

+ @/ V,)*E(1) — L, (1) = 1y(7) (28)
(% [72)E" () + " (T) + 280/ Vi) (T) + a(r) [ V> —m,(t) =0
(29)

The nondimensional parameters appearing in the preceding equa-
tions are displdyed in Appendix B.

The sonic-boomand blast overpressures*>23~2° can be expressed
as follows:

I(t) =[H(x) = H(x —r1)lp,(1 —t/,)  (30)
where H (7) is the Heaviside step function, g,, denotes the dimen-
sionless peak reflected pressure in excess of the ambient one (see
Refs. 4, 5, and 25 and the references therein), t, denotes the posi-
tive phase durationof the pulse measured from the time of impact of
the structure, and r denotes the shock pulse length factor. A depic-
tion of I, /g, vs time is displayed in Fig. 3. For r =2 a symmetric
N-shaped pulse is obtained (Fig. 3a) and, for » = 1, the N-shaped
pulse degenerates into a triangular pulse that corresponds to an ex-
plosive pulse (Fig. 3b). Equation (30) represents, in a condensed
form, the time history of a triangularblast (for whichr = 1,1, = 0 for

025 F ) '
(straight wing)

-5 N
T

52 2
L

Ay
K4

10 20

30 40 50 60
Dimensionless Time, T

Fig. 4 Predictions of the aeroelastic responses of a straight/swept wing to a gust load, based on exact Theodorsen’s function and on its selected
approximations supplied in Refs. 13-18; the gust load is expressed in terms of the Kuissner’s function.

Y 1, =0.25 ——- T, =0.75 - -

A=-15°

10 20

30 40 50 60
Dimensionless Time, ©

Fig. 5 Predictions of the aeroelastic response time histories of a swept aircraft wings (A=*15 deg) to 1-cosine gust load
[wg(T)= H(T)w, sin2(7r7-/7-p)— H(T — 1,)w sin2(7r7-/7-p )] for selected values of the propagationspeed of the gust 7,.
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T <0and 1 > 7,), whereas, for a sonic boom, when r # 1, [, =0 for
7 < 0; it simulates the positive and negative phases of the pulse for
a0<t<rt,andrt, <1 <rr,, respectively,and [, =0 for t > r1,,.
We assume that the time-dependent pressure pulses reach the peak
value in such a short time that the structure can be considered to
be loaded instantly and uniformly in the spanwise and chordwise
directions.

For this reason, the twist moment in Eq. (26) associated to these
pulses is immaterial. Equations (28) and (29) can be converted
to the Laplace transformed space and solved for the unknowns,
S(s)_ﬁ{f(r)} and a(s) = L{a(r)}. In addition, in the Laplace
space, the unsteady aerodynamic derivatives can be directly ob-

tained from Appendix A by replacingik, by s. The same equations,
inverted back in the time domain, yield the plunging and pitching
time histories and the load factor time history due to the sonic-
boom pressure pulse, £(7) =L [S(s)] and a(r)=L"" [a()],
respectively.

IV. Results and Discussion

To address the problem of the aeroelastic response by capturing
the three-dimensionaleffects, a modified strip theory will be used.’
For swept wings, the local lift-curve slope C,,, involving the cor-
rections of the aspectratio AR and sweep angle A, is obtained from
the aerodynamics of swept wings and is expressed as'26

Plunging Time-History

0.15 |
1
—— A=0°
01}
— — - A=15
0.05 |
2 B A S S RN N AV S T WP 4 A N U S U IR—— A=30°
b, 0
————— A=45°
=0.05 |
0 10 20 30 40 50 60
a) Dimensionless Time, 7
Load Factor
13 FORCED MOTION FREE MOTION
1.2 A=0°
11 ——- A=15°
N
————— A=30°
14
————— A=45°
09 |
0.8
0 10 20 30 40 50 60
b) Dimensionless Time, 7
Pitching Time-History
03
0.2 A=0°
a
0.1} ‘\\\ — —- A=15°
1 f\\ -
\ / \ \ — ’\/ -
0 / // \\\\\\ / /’4,{ \"i /X\(/ \‘//\ < /> <A o= A=30°
1/ /i ; ONT s
o) WM
—0.1 S A=45°
-0.2
0 20 30 40 50 60

c)

Dimensionless Time, 7

Fig. 6 Influence of angle of sweep A on the aeroelastic response to a blast pressure pulse.
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Cr.R
cos ACpo /7 + Ry/1+[Cpycos AJ(m R)P

CLO(U =

For moderate-aspect-ratiowings, the maximum influence of the
corrective term, identified by the tracer §,, is present in the first
plunging coefficients H, (see Appendix A). Usually, for all un-
steady aerodynamic derivatives, the effect of these terms becomes
significant for high sweep angles and for large values of the param-
eter a,. In addition, for small-aspect-ratio wings, the effect of the
camber becomes significant and as a result should be included. For
high-aspect-ratiowings this effect becomes negligibly small.

High-aspect-ratio R will produce high Hy, A, and A4, and be-
cause these are correlated to the plunging displacement, large aero-
dynamic loads will be induced.

Notice that, for k— oo, the circulatory components of
Theodorsen’s function assume the values F (k) — % and G (k) — 0,
and the correspondingunsteady aerodynamicderivativescan be de-
termined in agreement with the steady-state solution for lift and
aerodynamic moment. In these developments, all of the terms, in-
cluding the aerodynamic ones associated with & and &, have been
retained. Usually, these terms are neglected; however, due to the
presence of high-frequency componentsin the blast pressure terms,
their effect can be significant.

As a result, the coefficients Hs, Hs and As, Ag are also main-
tained. Whereas the aerodynamic coefficients H; and A, are the
principal uncoupled aerodynamic damping coefficients in plunging
and torsion, respectively, H, and A, are the coupled damping co-
efficients. As concerns the depiction of H; and A; vs 2x /k, this
representation enables one to get an idea of the variation of these
quantities with that of the normal freestream speed U,,.
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A. Subcritical Aeroelastic Response

The graphs depicting the aeroelasticresponsetime history to gust
and blast pulses are displayedin Figs. 4-13. In each of these graphs
the corresponding type of pressure load is indicated in an inset.

In addition, the parameters in use for the simulations, unless oth-
erwise specified, are chosen as V, =1, u =10, ®=0.5, r, =0.5,
Xa =0.125,¢,=¢,=0,a,=-02, p, =1, wo=1, 7,=15, and
r =1 or 2. Although the numerical simulations concern the aeroe-
lastic responses at the wing tip cross section, = 1, the time history
of displacement variables can be evaluated in any cross section of
the aircraft wing.

1. Response to 1-Cosine Gust Load

For obviousreasons (see, forexample,Ref. 1), the time-dependent
gust loads have a character different from that of the blast loads.
For both traveling sharp-edged or stationary gusts the associated
loads involve the use of indicial lift and moment functions. With
regards to this similarity, a parameter that identifies the propaga-
tion speed of the gust, 7, =V, /(V, + V,), is used (see, for exam-
ple, Refs. 8 and 27). On the other hand, because a twist moment
is also induced by the gust, this load involves both equations of
motion.

In Fig. 4, predictions of the aeroelastic response of a
straight/swept wing to a gust load (evaluated via gust penetration
Kussner’s functionand indicatedin the inset of Fig. 4) are presented.
For their computation, both the exact and selected approximate ex-
pressions of Theodorsen’s function (see Refs. 14-18) have been
used. The differences in the response occurring as a result of these
approximationsare indiscernible,indicative of the high accuracy of
the approximationsinvolving the expression of C(s).
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Fig.7 Influence of the speed parameter V, on the response of a swept aircraft wing (A =15 deg) to blast pulses.
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Fig.10 Flutter calculation via U-g method.!

For a £15-deg swept wing encountering a traveling gust, Fig. 5
highlights the influence on the plunging time history of the propa-
gation speed of the gust for the cases of 7, = 1.00 (corresponding
to the Kussner’s function) and 7, = 0.25, 0.50, and 0.75, that s, for
selected intermediate values of the gust speed. A full discussion of
the implication of the propagation speed of the gust are beyond the
scope of this paper. Note that, even if the aerodynamic loads are
affected by the traveling gust,®?’ the maximum amplitudes of the
response shift toward smaller times and are only slightly affected by
the propagationspeed of the gust. The results reveal that, in the case
of a swept-back wing, the amplitudes of the plunging displacement
are lower than those of its swept-forward wing counterpart.

2. Response to Blast and Sonic-Boom Pressure Signatures

The graphs in Figs. 6 supply the dimensionless plunging
(§=h/b,) and pitching () displacements and the load factor
(N =14h"/g, where g is the acceleration of gravity) time history
aeroelastic responses to a blast pressure pulse. It becomes apparent
that an increase of the wing sweep angle results in a decrease of the
severity of the pulse signature.

In addition, the plunging-pitching coupling helps to reduce the
amplitude of the aeroelastic response2’ The load factor N has its
maximum at 7 =0, when the first impulse due to the blast load
occurs.

Figure 7 highlights the effect of the speed parameter

Vn (E Un/bna)oz)

on plunging time history of the swept aircraft wing (A =15 deg)
subjected to blast pulses. It becomes apparent that the amplitude of
the responsetime history increases with the increase of V,,. In a fixed
speedrange, the amplitude decays due to the involved subcriticalre-
sponse. However, for V, = 2.12, the flutter instability is impending.
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Fig. 11 Three-dimensional phase-space portrait depicting the dimensionless plunging deflection time history of swept aircraft wing (A =15 deg) to
blast pressure signature vs the load factor N for selected values of the speed parameter.

The effect of the mass parameter (= m/mpb?), for a swept wing
characterized by A =15 deg, is indicated in Fig. 8. The increase
in the mass ratio results in the increase of the plunging and pitch-
ing displacementamplitudes. Therefore, for higher mass ratios and
AR, the motion damps out at larger times. Note that the response to
sonic-boompressure pulsesinvolvestwo differentregimes (Figs. 9a
and 9b): one for which 0 < 7 < 30 corresponds to the forced mo-
tion and the other for which 7 > 30 corresponds to free motion. The
jump in the time history of N (Fig. 9b) is due to the discontinu-
ity in the load occurring at T = 30. For explosive pressure pulses,
where r =1, this jump does not occur (Fig. 6b). Moreover, when
the sweep angle is increased, the effect of the blast becomes less
severe.

B. Flutter Instability Boundary

The unsteady aerodynamic derivatives, expressed in the Laplace
transformed space, are applied in the flutter analysis, and the results
are displayed in Fig. 10. To validate our approach, a comparison
of the flutter prediction via indicial function of a cantilever metal-
lic swept wing of R =4 and A = 60 deg is presented. The results
reveal that the predictions provided by the present approach (i.e.,
Ur =256.5 ft/s and wp = 255 rad/s) even in the case of such a low
aspectratio and large sweep angle wing are in excellent agreement
with those displayed in Ref. 1 (experimental model 15). On the
same graph, comparisons of the results based on the assumptions of
Refs. 1 and 12 with those based on the presentanalysis are presented.
Whereas, in our approach, the camber effect and the correctionsre-
lated to the aspect ratio and sweep angle were included, in Ref. 12
these effects are not addressed at all. In Ref. 1 these effects are par-
tially considered. The critical value of the flutter speed is obtained
herein via the solution of both the complex eigenvalue problem and
from the response analysis. In Fig. 10 the range in which the flutter

instability occurs is determined from the response time histories.
The flutter predictions based on both methods show an excellent
agreement. In addition, to further validate this approach, the flut-
ter speed of Goland’s?® and Goland and Luke’s? cantilevered wing
(AR =6.67), which constitutes a standard of comparison through-
out the specializedliterature, has been evaluated via the present ap-
proach from the response to blast loads. The flutter characteristics
providedby the present approach (490 km/h and 69.12 rad/s), are in
excellentagreement with Goland’s?® and Goland and Luke’s?® exact
results (494.1 km/h and 70.69 rad/s) and with Ref. 30 (495 km/h
and 70.37 rad/s), in which an exact solution methodology was used.
There is also an improvement of the flutter prediction when com-
pared with the results provided by Patil et al.’' (488.3 km/h and
70.2 rad/s) and with the ones derived by finite element
codes COMBOF?? (483.1 km/h and 70.81 rad/s), SADSAM?
(472.5 km/h, -), and state vector’* (486 km/h, -), where the dashes
indicate that the value of the flutter frequency was not reported.

An original point prompted in this paper concerns the fact that
the evolution of the aeroelastic system can be graphicallyillustrated
by examining its motion in the phase space, rather than in the real
space and by recognizing that the trajectory depicted in this space
representsthe complete time history of the system (see Figs. 11-13).
The trajectory of motion describes an orbit with constantamplitude
(the center), which corresponds to the flutter conditions that coin-
cide with those obtained from the eigenvalue analysis. For V < Vg,
as time unfolds, a decay of the amplitude is experienced, which re-
flects that, in this case, a subcritical response is involved (stable fo-
cal point), whereas, for V > V., the response becomes unbounded,
implying that the occurrence of the flutter instability is impending
(unstable focal point).

Figure 11 highlights a three-dimensional phase-space portrait (£
vs & and N) of the plunging time-history response to blast load of
a swept aircraft wing (A = 15 deg) for selected values of the speed
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Fig. 12 Phase-plane (¢, 5 ) and phase-space portraits (¢, S, N) depicting the dimensionless plunging deflection time history of a swept aircraft wing

to blast pressure signature, for selected values of the sweep angle.

parameter. For V,, =2.12, representing the critical speed at which
the periodic solution has been obtained, the occurrence of the flutter
instability is impending.

Figure 12 shows the phase-plane portrait and the relative three-
dimensional plots (vs the load factor N) for selected values of the
sweep angle A. With the increase of the sweep angle, the motion
damps out at smaller times, and a decay of the amplitude of the
response as well as of the load factor is experienced.

Figure 13 supplies three-dimensionalpictorial views of the plung-
ing and pitching motions in the proximity of the flutter bound-
ary vs the variation of the sweep angle. These plots provide
a clear view of the evolution of the maxima of displacement
amplitudes.

Note that the methodology presented here can be extended to
the compressible flight speed regimes. For that case, appropriate

indicial functions for the compressible subsonic, supersonic, and
hypersonic flight speed regimes have to be used.

In Refs. 35-40, the concept of indicial functions in subsonic
compressible flow has been developed, and an approximation and
validation of indicial functions for any value of Mach number in
the compressible speed range was obtained. In contrast to the in-
compressible case, the indicial functions in subsonic compressible
flow are not analytic, except for limited instants of time. Follow-
ing the formulation in Refs. 35-37, a new set of indicial func-
tions, for the plunging and pitching degrees of freedom, can be
adopted and implemented. Moreover, an advanced structural model
of aircraft wings, as considered, for example, in Ref. 30, can be
adopted for such a study. However, the goal of the paper was not
to illustrate the implications of nonclassical structural features, but
only to develope some basic principles that can further be extended
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Fig. 13 Cone of stability orbits depicting the envelope of the upper
bound values of the dimensionless plunging and pitching deflection time
histories of an aircraft wing vs A to blast pressure signatures.

and properly exploited to more complex structural wing config-
urations.

V. Conclusions

A unified treatment of swept lifting surfaces in time and fre-
quency domains has been presented, and the usefulness, in this con-
text, of the aerodynamicindicial function concept was emphasized.
The time-domainrepresentationis essential toward determinationof
the dynamic aeroelastic response to time-dependent external loads.
Two ways of representing the aeroelastic response have been used,
namely, the classical one, consisting of displaying the time histories
of plunging, pitching, and load factor, and the phase-space repre-
sentation that provides useful information about the behavior of the
aeroelastic system.

Applications assessing the versatility of the methodology pre-
sented here toward the approach of both the subcritical acroelastic
response and flutter instability of three-dimensional swept aircraft
wings have been presented. The concept of the stability boundary
andits enhancementviathe use of the variable sweep wing geometry
have beenillustrated. The unified formulationpresentedin this work
can be extended to various flight speed regimes. The method may
have applications toward determination of the critical flutter speed
via the experimental investigationof the aeroelasticresponse of air-
craft wings to pulse loadings. Moreover, it creates the theoretical
basis for a unified nonlinear aeroelastic approach of swept aircraft
wings based on the use of nonlinear indicial functions.

Appendix A: Unsteady Aerodynamic Derivatives
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Here the aspectratio R and the spanwise dimensionless coordi-
nate n are defined as R =1, /b, cos* A and n=3/I, respectively.
For A =0, the expressions of aerodynamic coefficients reduce to
those pertinent to straight wings.

Appendix B: Nondimensional Parameters
for Flutter and Response Analyses
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