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Aeroelastic Response and Flutter of Swept Aircraft Wings
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Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0219
and

Walter A. Silva‡

NASA Langley Research Center, Hampton, Virginia 23681-2199

A uni� ed approach of stability and aeroelastic response of swept aircraft wings in an incompressible � ow is
developed. To this end, the indicial function concept in time and frequency domains is used, and on this basis
the � utter instability and subcritical aeroelastic response to arbitrary time-dependent external excitation are
analyzed. In addition, an original representation of the aeroelastic response in the phase space is presented, and
the implicationsof the related results toward determining the � utter instability in � ightare emphasized. Validations
of selected results against the theoretical and experimental predictions are supplied, and pertinent conclusions are
outlined.

Nomenclature
an = dimensionless elastic axis position measured

from the midchord, positive aft
C.k/; F.k/; = Theodorsen’s function and its real and
G.k/ imaginary parts, respectively
CL®n = local lift-curve slope for a section normal to the

elastic axis in steady � ow
cn = chord length of wing, normal to the

elastic axis, 2bn

fh , f® = plunging and pitching decoupled eigenmodes,
respectively

Hi ; Ai = dimensionless unsteady aerodynamic
coef� cients

h; h0; » = plunging displacement, its amplitude, and
dimensionless counterpart, h=bn , respectively

Iy , Nr® = mass moment of inertia per unit span wing
and the dimensionless radius of gyration,
.Iy=mb2

n/1=2, respectively
i = imaginary unit,

p
¡1

L i , Mi = dimensionless unsteady aerodynamic complex
coef� cients

3 La , 3 Ma = total lift and moment about the elastic axis
per unit span of the swept wing

Lb , lb = overpressuredue to an N-wave shock pulse
and its dimensionless counterpart, Lbbn=mU 2

n ,
respectively

L; s = Laplace operator and Laplace variable,
respectively

l = wing semispan measured along the
midchord line

la , ma = dimensionless aerodynamic lift, Labn=mU 2
n ,

and moment, Mab2
n=IyU 2

n , respectively
m; ¹ = wing mass per unit length and wing/air mass

ratio, m=¼½b2
n , respectively

N = load factor, 1 C h 00=g
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Pm; }m = peak re� ected pressure in excess of the ambient
one and its dimensionless counterpart
Pmbn=mU 2

n , respectively
r = shock pulse length factor
S®; NÂ® = static unbalance about the elastic axis and its

dimensionless counterpart, Sy=mbn , respectively
t = time variable
U1; Un ; Vn = freestream speed, its component normal to the

elastic axis, and the dimensionless counterpart,
Un=bn!® , respectively

w = downwash velocity
x; y = coordinates parallel and perpendicular to

freestream direction
Nx; Ny = chordwise (normal to the elastic axis)

and spanwise (along the elastic axis) coordinates
z; Z = transverse normal coordinate to the midplane of

the wing and the vertical displacement in z
direction, respectively

®; ®0 = twist angle about the elastic axis and its
amplitude, respectively

±r = tracer quantity
³h ; ³® = structural damping ratio in plunging, ch=2m!h ,

and in pitching, c®=2Iy!® , respectively
´ = dimensionless coordinate along the wing

span, Ny=l
3 = sweep angle (positive for swept back)
¸; ¾ = spanwise rate of change of twist and bending,

respectively
½ = air density
¿ = dimensionless time, Unt=bn

¿p = dimensionless positive phase duration of the
pulse, measured from the time of the arrival

¿w = parameter identifying the propagation speed
of the gust Vg with respect to Vn

Á.¿ /, 8.s/ = Wagner’s function in time and
Laplace domains, respectively

!; kn = circular and reduced frequencies, !bn=Un ,
respectively

N! = plunging–pitching frequency ratio, !h=!®

!h , !® = uncoupled frequency in plunging, .Kh=m/1=2 ,
and pitching, .K®=Iy/

1=2 , respectively

Subscripts

c, nc = circulatory and noncirculatory terms of lift
and aerodynamic moment, respectively

n = quantity normal to the elastic axis
3 = quantity associated with the swept wing
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Superscripts

^ = variables in Laplace transformed space
¢; 0 = derivatives with respect to the time t and the

dimensionless time ¿ , respectively

I. Introduction

I N this paper, the concept of indicial1¡3 functions in time and fre-
quency domains is used to determine, for incompressible � ow-

� elds, the associated unsteady aerodynamic derivatives for swept
lifting surfaces. Such a treatment of the problem enables one to
approach, in a uni� ed way, both the aeroelastic response in the
subcritical � ight speed regime to arbitrary time-dependent external
excitations (such as explosive airblasts and sonic boom4;5/ and the
� utter instability of swept wings. In this paper, both problems are
addressed.

As a byproduct of this analysis, a closed-form solution of un-
steady aerodynamic derivatives, including corrections for aspect
ratio, sweep angle, and camber effect, is obtained. This modi� ed
version can easily be implemented and used in aeroelastic response
problems including � utter analyses.

The unsteady aerodynamic lift and moment in the incompress-
ible � ight speed regime are expressed for the swept aircraft wing
in the time and frequency domains by the use of Wagner’s and
Theodorsen’s functions, respectively. For aeroelastic response, it
is only necessary to express the lift and moment via the indicial
Wagner’s function. Toward the approach of the � utter problem,
two avenues have been pursued here, namely, that based on com-
plex eigenvalue analysis and on aeroelastic response. Whereas
Theodorsen’s function helps with the conversionof the expressions
of both the aerodynamicloads and of unsteadyaerodynamicderiva-
tives in the frequency domain, their Laplace domain counterparts
are directly applicable in aeroelastic response problems.6;7

Within this uni� ed approach, the � utter instability from the data
related to the aeroelastic response will be evaluated.

Herein, a swept aircraft wing (Figs. 1 and 2) that features the
plunging h and pitching ® degrees of freedom and that is ex-
posed to a two-dimensional incompressible � ow is used. The con-
cept of swept wing generated by rotation was adopted (Fig. 1),
and the wing structure is modeled within the Bernoulli–Euler
hypothesis.

Fig. 1 Nonuniform swept wing.

Fig. 2 Airfoil section.

As a basic assumption, the oscillatory motion is represented as a
combinationof theuncoupledbendingand twistingvibratingmodes
of the wing.

In connectionwith the various loads interveningin the aeroelastic
governingequations,the distinctionbetweenunsteadyaerodynamic
and gust loads, on one hand, and blast loads, on the other hand, was
clearly described by Bisplinghoff et al.,1 and this point of view was
adopted in this paper as well.

The resultsof this approachare valid if theblastpulsesare charac-
terizedby small to moderateloadingintensities.As a result,although
these are not able to cause severe damage, the inducedvibration can
lead to failure by fatigue of the structure. For most problems of this
nature, these conditions are likely to be satis� ed unless the wing
structure is far away from the center of the blast/sonic boom. As
was clearly stated in Ref. 8, the limiting distance depends on the
magnitudeof the blast, the orientationrelative to the wing structure,
the speed of the aircraft, and the geometry of the wing.

As was shown by Yates,9 the use of modi� ed strip theory aerody-
namics providesvery good results for moderate to large aspect ratio
wings and for moderate sweep angles, up to 3 D 60 deg. Within
the present aerodynamic modeling, the corrections involving the
lift-curve slope (which are related to the sweep angle and aspect ra-
tio), are extracted from the steady aerodynamicsof � at rigid wings.
Moreover, in contrast to the usual procedureof discarding the cam-
ber deformation of sections normal to the elastic axis, this effect,
which becomes prominent for small-aspect-ratio wings, has been
taken into account.

Because in the present work a uniform swept wing in an incom-
pressible � ow� eld is considered,Yates’s modi� ed two-dimensional
strip theory involves,as the improvement,only the expressionof the
three-dimensionalsection lift-curve slope. The aerodynamiccenter
is located at the quarter chord on each cross section of the wing.

Although here a � xed lift-curve slope in the spanwise direction
was used, extension to a spanwise-varyinglift-curve slope based on
steady three-dimensionalsolutions for the wing is straightforward.
The approach and results of aeroelastic response to gust and blast
loads can be useful in the preliminary design and are likely to con-
tribute to a better understandingof the implicationsof a number of
parameters related to the wing geometry and the characteristics of
the blast on the dynamic response of the wing. Moreover, exten-
sion of this methodology toward the uni� ed nonlinear aeroelastic
approach by using nonlinearaerodynamicindicial functions consti-
tutes the next goal of this research.

II. Preliminaries
As shown in Ref. 10, for zero initial conditions, the unsteady

aerodynamic loads can be converted from the time to the frequency
domain via a Laplace transform. This results in the possibility of
using the correspondence s ! ikn to convert the unsteady aerody-
namic load from the time to the frequency domain, where s and
kn are the Laplace transform variable and the reduced frequency,
respectively.The Laplace transform operator is de� ned as

. ¢ / D
Z 1

0

. ¢ /e¡s¿ d¿ (1)

whereas Wagner’s function Á.¿ / is connected with Theodorsen’s
function C.kn/, via a Laplace transform, as

C.kn/ D F.kn/ C iG.kn/ D ikn

Z 1

0

Á.¿/e¡ikn¿ d¿ D ikn8.ikn/

(2)
and vice versa

Á.¿/ D ¡1fC.kn/=ikng; Re.ikn/ > 0 (3)

Using the correspondences $ ikn , we can also write

8.ikn/
ikn ! s

D
Z 1

0

Á.¿ /e¡s¿ d¿ D 8.s/ (4)

Use of this relationship enables one to obtain the full expres-
sion of unsteady aerodynamicderivatives in terms of Theodorsen’s
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circulation function C .kn/ and its real and imaginary components
F.kn/ and G.kn/ in the frequencydomain, or their counterpartin the
Laplacedomain, as well. Note that the reduced frequencyparameter
kn for swept and straight wings coincide:

kn D !bn

Un
D !b cos 3

U1 cos3
D !b

U1
D k; i!t D ikn¿ (5)

This implies that the indicial Wagner’s function Á.¿ / remains
invariant to any change of the sweep angle.

III. Analytical Developments
For swept wings in an incompressible � ow� eld, the total lift per

unit span can be expressed in a way similar to that reported for a
two-dimensionalairfoil by Fung11:

3 La. Ny; t/ D 3 L c. Ny; t/ C 3 Lnc1. Ny; t/ C 3 Lnc2. Ny; t/ C 3 Lnc3. Ny; t/

(6)

Herein, the indices c and nc identify the various contributionsasso-
ciated with the circulatory and noncirculatory terms, respectively.
With similar notations, the total moment per unit span about the
elastic axis is

3 Ma. Ny; t/ D 3 Mc. Ny; t/ C 3 Mnc1. Ny; t/ C 3 Mnc2. Ny; t/ C 3 Mnc3. Ny; t/

C 3 Mnca. Ny; t/ (7)

3 Mnca. Ny; t/ being associatedwith the apparentmoment of inertia.11

The lift is positiveupward, whereas the moment is positive nose up.
For the sake of convenience, the plunging coordinate is positive
downward (see Fig. 2). When the vertical displacement Z of a point
on the centerline of the cross section of the wing is expressed as12

Z . Nx; Ny; t/ D h. Ny; t/ C Nx®. Ny; t/ (8)

where h ´ h. Ny; t/ and ® ´ ®. Ny; t/ are the displacementsin plunging
and pitching, respectively, and one assumes that the origin of the
Nx axis coincides with the elastic center, the downwash velocity w
normal to the lifting surface becomes

w.x; y; t/ ´ w. Nx; Ny; t/ D @ Z

@t
C U1

@ Z

@ Nx
(9)

The in-plane chordwise coordinate Nx normal to the elastic axis (see
Figs. 1 and 2) can be expressed as

Nx D bn

¡
1
2

¡ an

¢
(10)

Consequently,by useof the dimensionlesstime ¿.´Un t=bn/, Eq. (9)
becomes

w. Nx; Ny; ¿/ D Un

µ
h0

bn
C ® C

@h

@ Ny tan 3

C
³

1

2
¡ an

´³
®0 C bn

@®

@ Ny tan 3

´¶
(11)

where bn is the half-chordof the airfoil, Un is the component of the
� ow speed, both normal to the elastic axis, and .¢/0 ´ @.¢/=@¿ . The
underlinedquantity in Eq. (11) is related to the wing camber effect.
Because its effect is rather small for high aspect ratio wings, it is
usually discarded in the specialized literature.1;13 However, herein,
this effect will be taken into consideration.

In the following sections, the unsteady aerodynamic loads are
obtained in the time domain (Sec. III.A.1) and via the use of the
Laplace transform in the frequency domain (Sec. III.A.2). The un-
steady aerodynamic derivatives are expressed in the frequency do-
main (AppendixA) and converted in the Laplace domain to be used
toward the � utter evaluation.

A. Unsteady Aerodynamic Loads in Incompressible Flow
1. Time Domain

The circulatory component of the lift, expressed in terms of
Wagner’s indicial function Á.¿ / (referred also to as heredity func-
tion), obtained in the time domain, is12

3 L c. Ny; ¿ / D ¡CL®n bn½U 2
n

Z ¿

¡1
Á.¿ ¡ ¿0/

"
h00

bn
C ®0 C @2h

@ Ny@¿0
tan 3

C
³

1
2

¡ an

´³
®00 C bn

@2®

@ Ny@¿0
tan 3

´#

d¿0 (12)

The aerodynamic noncirculatory components, using the dimen-
sionless time, are expressed as

3 Lnc1. Ny; ¿ / D ¡1
2

CL®n ½U 2
n [h00 ¡ anbn®00] (13a)

3 Lnc2. Ny; ¿ / D ¡1

2
CL®n ½U 2

n bn®0 (13b)

3 Lnc3. Ny; ¿ / D ¡1

2
CL®n ½U 2

n b2
n tan3

µ
.±r C 1/

¾ 0

bn
C ±r ¸

C ±r
@¾

@ Ny
tan 3

¶
C 1

2
anCL®n ½U 2

n b3
n tan 3

µ
.±r C 1/

¸0

bn

C ±r
@¸

@ Ny
tan 3

¶
(13c)

By the use of the expressionof the lift [Eq. (6)], the equation for the
moment [Eq. (7)] can be cast as

3 Ma. Ny; t/ D ¡
¡

1
2

C an

¢
bn 3 L c. Ny; t/ ¡ anbn 3 Lnc1. Ny; t/

C
¡

1
2

¡ an

¢
bn 3 Lnc2. Ny; t/ C 3 Mnc3. Ny; t/ C 3 Mnc. Ny; t/ (14)

in which, using the dimensionless time, the last two noncirculatory
components are expressed as

3 Mnc3. Ny; ¿ / D ¡1

2
CL®n ½U 2

n b3
n

1

2
¸ tan 3 ¡ anbn 3 Lnc3

¡ 1

16
CL®½U 2

n b4
n tan 3

µ
.±r C 1/

¸0

bn
C ±r

@¸

@ Ny
tan3

¶
(15)

3 Mnc. Ny; ¿ / D ¡ 1

16
½CL®n b2

nU 2
n ®00 (16)

Herein, the spanwise rates of change of bending and twist, ¾ and
¸, respectively, are de� ned as ¾ D @h=@ Ny and ¸ D @®=@ Ny. In these
equations,and in the followingones, the terms affectedby the tracer
±r are generated by the last underlined term in the expressionof the
downwash velocity [Eq. (11)]. When these terms are discarded,
±r D 0, and when they are retained, ±r D 1.

Substituting Eqs. (12) and (13) into Eq. (6) and Eqs. (12), (13),
(15), and (16) into Eq. (14) results in the unsteady lift and aerody-
namic moment expressed in the time domain. To facilitate the com-
putations, the available approximate expressions for Á.¿ / and for
C.k/ (Refs. 11 and 14–18) can be used in the Laplace transformed
space.Alternatively,an approximationin terms of exponentialpoly-
nomials or quasi polynomials can be applied for this case as well.
In the case of the supersonicunsteady aerodynamics,the advantage
of using such representations was emphasized in Ref. 19. In our
numerical simulation, Jones’s approximation of Wagner’s function
was used (see Ref. 11).

The expressions of lift and aerodynamic moment in the time do-
main, 3 La. Ny; ¿ / and 3 Ma. Ny; ¿/, can be used to determine the sub-
critical aeroelastic response of swept wings. However, when the
aeroelastic response of wings to time-dependent external excita-
tions is required, the unsteady aerodynamic loads 3 La and 3 Ma

have to be supplemented by those corresponding to the involved
pulses. This will be considerednext, and an illustrationof the capa-
bilities provided by this method will be presented.
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2. Frequency and Laplace Domains
A number of steps enabling one to express the unsteady lift and

moment in the frequency and Laplace domains should be imple-
mented.To this end, the followingsequenceof operationsis applied:
1) replace s ! ikn in Eqs. (6) and (7) converted to Laplace trans-
formed space, 2) use the relationshipbetween Laplace transformof
Wagner and Theodorsen’s functions [Eq. (2)], and 3) represent the
time dependence of displacement and aerodynamic quantities as

®. Ny; ¿ / D f®. Ny/ Q®.¿; kn/ D f®. Ny/®0eikn¿ (17a)

h. Ny; ¿/ D fh. Ny/ Qh.¿; kn/ D fh. Ny/h0eikn¿ (17b)

3 La. Ny; kn; ¿ / D 3
NLa. Ny; kn/ei kn¿ (17c)

3 M®. Ny; kn; ¿ / D 3
NM®. Ny; kn/eikn¿ (17d)

In this analysis f®. Ny/ and fh. Ny/ are chosen to be the decoupled
eigenmodes in plunging and twist of the wing structure and are
determined to ful� ll the boundary conditions identically.These are
expressed as

fh. Ny/ D Fh

³
´ ´

Ny
l

´
D C1

µ
sinh ¯1 C sin ¯1

cosh ¯1 C cos¯1
.cos ¯1´

¡ cosh¯1´/ C sinh ¯1´ ¡ sin ¯1´

¶
(18)

f® . Ny/ D F®

³
´ ´

Ny
l

´
D C2 sin¯2´ (19)

where, for the � rst bending and torsion eigenmodes, we have
¯1 D 0:5969¼ and ¯2 D ¼=2. The constants C1 and C2 are chosen
to normalize fh. Ny/ and f®. Ny/, to get the unitary maximum de� ec-
tion at the wing tip. The uncoupled � rst bending and torsion mode
shapes are needed for the evaluations of the terms in Eqs. (A1–A8)
and are displayed in Ref. 20. The use of uncoupledmodes in � utter
calculations is discussed in detail in Ref. 12, among others, and this
methodology will be used here.

B. Modi� ed Unsteady Aerodynamic Derivatives
In this section, a closed-form solution of the modi� ed unsteady

aerodynamic coef� cients for swept wings, which represent an
amended version of those in Refs. 1 and 12, have been derived,
and their use in the process of the uni� ed aeroelastic formulation
of � utter and aeroelastic response of swept aircraft wings has been
addressed.

A careful inspection of equations for lift and moment expressed
in the time domain [Eqs. (7) and (8)] suggests the following repre-
sentation of these quantities:

3 La. Ny; kn ; ¿/ D 1
2 ½U 2

n 2bn

£
kn H1.h

0=bn/ C kn H2®0

C k2
n H3® C k2

n H4.h=bn/ C H5®00 C H6.h
00=bn/

¤
(20)

3 M®. Ny; kn ; ¿ / D 1
2
½U 2

n 2b2
n

£
kn A1.h

0=bn/ C kn A2®
0

C k2
n A3® C k2

n A4.h=bn/ C A5®
00 C A6.h

00=bn/
¤

(21)

In these equations Hi and Ai denote the dimensionless unsteady
aerodynamiccoef� cients,whereaskn hasbeenincludedto renderthe
quantitiesin bracketsnondimensional.In a restrictedcontext,such a
mixed form of the lift and moment was used in Refs. 21 and 22. Un-
der the assumption of harmonic time dependence of displacements
quantities, the frequency-domain counterpart of Eqs. (20–21), ex-
pressed in compact form, becomes

3
NLa. Ny; kn/ D ½U 2

n k2
n bn [.h0=bn/L1 C ®0L2] (22a)

3
NM®. Ny; kn/ D ½U 2

n k2
nb2

n [.h0=bn/M1 C ®0 M2] (22b)

where the unsteady aerodynamic complex coef� cients L i and Mi

can be expressed in terms of unsteady aerodynamic derivatives as

L1 D i OH1 C OH4; L2 D i OH2 C OH3 (23a)

M1 D i OA1 C OA4; M2 D i OA2 C OA3 (23b)

where, for the sake of convenience, these are written as

OH1 D H1; OH2 D H2 (24a)

OH3 D .H3 ¡ H5/; OH4 D .H4 ¡ H6/ (24b)

OA1 D A1; OA2 D A2 (24c)

OA3 D .A3 ¡ A5/; OA4 D .A4 ¡ A6/ (24d)

The closed-formsolutionsfor the unsteadyaerodynamicderivatives
in the frequencydomain for swept wings areobtainedfromEqs. (22)
and are expressed in terms of Wagner’s function 8.ikn/. When the
real and the imaginary parts of these expressions are separated, the
unsteadyaerodynamicderivativesare obtainedin the formdisplayed
in Appendix A. These include the correction for the aspect ratio,
sweep angle, and also the spanwise rates of change of bending and
twist, ¾ and ¸. For straight wings, these terms become immaterial.

Equations (20) and (21) are used in two contexts, namely, in the
frequency and the Laplace space domains. In the former case, the
aerodynamic derivatives Hi and Ai have to be used in accordance
with Eqs. (A1–A8). This form of the aerodynamic loads will be
used to determinethe � utter instabilityvia the solutionof a complex
eigenvalue problem. In the latter case, Eqs. (20) and (21) are used
in conjunction with Eqs. (A1–A8), converted to Laplace space do-
main using the relationshipspresented earlier. In this case, the gov-
erning equations, including the aerodynamic, blast, and gust loads,
are converted to an algebraic system of equations in the Laplace
transformed space. This formulation of governingequation enables
one to address both the aeroelastic response to blast and gust loads
and also the � utter instability.

Notice that the � utter analysis can also be conducted in the
Laplace space domain. In this case, classical methods such as U –g
or p–k methods can be used.

a)

b)

Fig. 3 Pressure pulses for a) sonic boom and b) triangular blast.
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C. Aeroelastic Response and Flutter Instability Derived from the
Subcritical Aeroelastic Response

An application of the � utter instability and of the aeroelastic re-
sponse of a swept wing to blast and sonic-boom pressure pulses
is considered next. The aeroelastic governing system pertinent to
swept wings featuringplungingand twisting degrees of freedom9;12

and exposed to blast pressure pulses is expressed as

EI
@4w

@ Ny4
C m

@2w

@t 2
¡ Sy

@2®

@t 2
¡ La. Ny; t/ D Lb. Ny; t/ (25)

G J
@2®

@ Ny2
C Sy

@2w

@t 2
¡ Iy

@ 2®

@t 2
¡ Ma. Ny; t/ D 0 (26)

For the cantilevered wing, the related boundary conditions are
µ

w. Ny; t/ D
@w. Ny; t/

@ Ny
D ®. Ny; t/

¶­­­­
Ny D 0

D 0

µ
@2w. Ny; t/

@ Ny2
D

@3w. Ny; t/

@ Ny3
D

@®. Ny; t/

@ Ny

¶­­­­
Ny D l

D 0 (27)

By the use of shape functions, given by Eqs. (18) and (19), the
aeroelastic governing equations in dimensionless form become

Fig. 4 Predictions of the aeroelastic responses of a straight/swept wing to a gust load, based on exact Theodorsen’s function and on its selected
approximations supplied in Refs. 13–18; the gust load is expressed in terms of the Küssner’s function.

Fig. 5 Predictions of the aeroelastic response time histories of a swept aircraft wings ( K = §§ 15 deg) to 1-cosine gust load
[wG (¿ ) = H(¿ )w0 sin2(¼¿ /¿p) ¡ H(¿ ¡¡ ¿p )w0 sin2(¼¿ /¿p )] for selected values of the propagation speed of the gust ¿w .

» 00.¿/ C NÂ®®00.¿/ C 2³h. N!=Vn/» 0.¿ /

C . N!=Vn/2».¿ / ¡ la.¿/ D lb.¿/ (28)
¡

NÂ®

¯
Nr 2
®

¢
» 00.¿ / C ®00.¿ / C .2³®=Vn/®.¿/ C ®.¿/

¯
V 2

n ¡ m® .¿/ D 0

(29)

The nondimensional parameters appearing in the preceding equa-
tions are displayed in Appendix B.

The sonic-boomand blast overpressures4;5;23¡25 can be expressed
as follows:

lb.¿ / D [H .¿/ ¡ H .¿ ¡ r¿p/]}m.1 ¡ ¿=¿p/ (30)

where H .¿ / is the Heaviside step function, }m denotes the dimen-
sionless peak re� ected pressure in excess of the ambient one (see
Refs. 4, 5, and 25 and the references therein), ¿p denotes the posi-
tive phase durationof the pulsemeasured from the time of impact of
the structure, and r denotes the shock pulse length factor. A depic-
tion of lb=}m vs time is displayed in Fig. 3. For r D 2 a symmetric
N-shaped pulse is obtained (Fig. 3a) and, for r D 1, the N-shaped
pulse degenerates into a triangular pulse that corresponds to an ex-
plosive pulse (Fig. 3b). Equation (30) represents, in a condensed
form, the time historyof a triangularblast (forwhichr D 1, lb D 0 for
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¿ < 0 and ¿ ¸ ¿p/, whereas, for a sonic boom, when r 6D 1, lb D 0 for
¿ < 0; it simulates the positive and negative phases of the pulse for
a 0 < ¿ < ¿p and ¿p < ¿ < r¿p , respectively, and lb D 0 for ¿ ¸ r¿p .
We assume that the time-dependentpressure pulses reach the peak
value in such a short time that the structure can be considered to
be loaded instantly and uniformly in the spanwise and chordwise
directions.

For this reason, the twist moment in Eq. (26) associated to these
pulses is immaterial. Equations (28) and (29) can be converted
to the Laplace transformed space and solved for the unknowns,
O».s/ ´ Lf».¿ /g and O®.s/ ´ Lf®.¿ /g. In addition, in the Laplace
space, the unsteady aerodynamic derivatives can be directly ob-

a)

b)

c)

Fig. 6 In� uence of angle of sweep K on the aeroelastic response to a blast pressure pulse.

tained from AppendixA by replacing ikn by s. The same equations,
inverted back in the time domain, yield the plunging and pitching
time histories and the load factor time history due to the sonic-
boom pressure pulse, ».¿ / ´ ¡1[O».s/] and ®.¿ / ´ ¡1 [ O®.s/],
respectively.

IV. Results and Discussion
To address the problem of the aeroelastic response by capturing

the three-dimensionaleffects, a modi� ed strip theory will be used.9

For swept wings, the local lift–curve slope CL®n , involving the cor-
rections of the aspect ratio AR and sweep angle 3, is obtained from
the aerodynamics of swept wings and is expressed as13;26
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CL®n D
CL®AR

cos3CL®=¼ C AR
p

1 C [CL® cos 3=.¼AR/]2
(31)

For moderate-aspect-ratiowings, the maximum in� uence of the
corrective term, identi� ed by the tracer ±r , is present in the � rst
plunging coef� cients OH1 (see Appendix A). Usually, for all un-
steady aerodynamic derivatives, the effect of these terms becomes
signi� cant for high sweep angles and for large values of the param-
eter an . In addition, for small-aspect-ratio wings, the effect of the
camber becomes signi� cant and as a result should be included. For
high-aspect-ratiowings this effect becomes negligibly small.

High-aspect-ratioAR will produce high OH4, OA1 , and OA4, and be-
cause these are correlated to the plunging displacement, large aero-
dynamic loads will be induced.

Notice that, for k ! 1, the circulatory components of
Theodorsen’s function assume the values F.k/ ! 1

2 and G.k/ ! 0,
and the correspondingunsteadyaerodynamicderivativescan be de-
termined in agreement with the steady-state solution for lift and
aerodynamic moment. In these developments, all of the terms, in-
cluding the aerodynamic ones associated with Rh and R®, have been
retained. Usually, these terms are neglected; however, due to the
presence of high-frequencycomponents in the blast pressure terms,
their effect can be signi� cant.

As a result, the coef� cients H5, H6 and A5 , A6 are also main-
tained. Whereas the aerodynamic coef� cients OH1 and OA2 are the
principal uncoupledaerodynamicdamping coef� cients in plunging
and torsion, respectively, OH2 and OA1 are the coupled damping co-
ef� cients. As concerns the depiction of OHi and OAi vs 2¼=k, this
representation enables one to get an idea of the variation of these
quantities with that of the normal freestream speed Un .

Fig. 7 In� uence of the speed parameter Vn on the response of a swept aircraft wing ( K = 15 deg) to blast pulses.

Fig. 8 In� uence of the mass parameter ¹ on the response of a swept aircraft wing ( K = 15 deg) to blast pulses.

A. Subcritical Aeroelastic Response
The graphs depicting the aeroelasticresponsetime history to gust

and blast pulses are displayed in Figs. 4–13. In each of these graphs
the corresponding type of pressure load is indicated in an inset.

In addition, the parameters in use for the simulations, unless oth-
erwise speci� ed, are chosen as Vn D 1, ¹ D 10, N! D 0:5, r® D 0:5,
Â® D 0:125, ³´ D ³® D 0, an D ¡0:2, }m D 1, w0 D 1, ¿p D 15, and
r D 1 or 2. Although the numerical simulations concern the aeroe-
lastic responsesat the wing tip cross section,´ D 1, the time history
of displacement variables can be evaluated in any cross section of
the aircraft wing.

1. Response to 1-Cosine Gust Load
For obviousreasons(see,for example,Ref.1), the time-dependent

gust loads have a character different from that of the blast loads.
For both traveling sharp-edged or stationary gusts the associated
loads involve the use of indicial lift and moment functions. With
regards to this similarity, a parameter that identi� es the propaga-
tion speed of the gust, ¿w D Vn=.Vn C Vg/, is used (see, for exam-
ple, Refs. 8 and 27). On the other hand, because a twist moment
is also induced by the gust, this load involves both equations of
motion.

In Fig. 4, predictions of the aeroelastic response of a
straight/swept wing to a gust load (evaluated via gust penetration
Küssner’s functionand indicatedin the inset ofFig. 4) are presented.
For their computation, both the exact and selected approximate ex-
pressions of Theodorsen’s function (see Refs. 14–18) have been
used. The differences in the response occurring as a result of these
approximationsare indiscernible,indicativeof the high accuracyof
the approximations involving the expression of C.s/.
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a)

b)

Fig. 9 In� uence of the sweep angle K on the response of a wing to sonic-boom pulses.

Fig. 10 Flutter calculation via U–g method.1

For a §15-deg swept wing encountering a traveling gust, Fig. 5
highlights the in� uence on the plunging time history of the propa-
gation speed of the gust for the cases of ¿w D 1:00 (corresponding
to the Küssner’s function) and ¿w D 0:25, 0.50, and 0.75, that is, for
selected intermediate values of the gust speed. A full discussion of
the implication of the propagation speed of the gust are beyond the
scope of this paper. Note that, even if the aerodynamic loads are
affected by the traveling gust,8;27 the maximum amplitudes of the
responseshift toward smaller times and are only slightly affectedby
the propagationspeed of the gust. The results reveal that, in the case
of a swept-back wing, the amplitudes of the plunging displacement
are lower than those of its swept-forward wing counterpart.

2. Response to Blast and Sonic-Boom Pressure Signatures
The graphs in Figs. 6 supply the dimensionless plunging

.» ´ h=bn/ and pitching .®/ displacements and the load factor
(N ´ 1 C h 00=g, where g is the acceleration of gravity) time history
aeroelastic responses to a blast pressure pulse. It becomes apparent
that an increase of the wing sweep angle results in a decrease of the
severity of the pulse signature.

In addition, the plunging–pitching coupling helps to reduce the
amplitude of the aeroelastic response.20 The load factor N has its
maximum at ¿ D 0, when the � rst impulse due to the blast load
occurs.

Figure 7 highlights the effect of the speed parameter

Vn.´ Un=bn!®/

on plunging time history of the swept aircraft wing (3 D 15 deg)
subjected to blast pulses. It becomes apparent that the amplitude of
the responsetime history increaseswith the increaseof Vn . In a � xed
speed range, the amplitudedecays due to the involvedsubcriticalre-
sponse.However, for Vn

»D 2:12, the � utter instability is impending.
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Fig. 11 Three-dimensional phase-space portrait depicting the dimensionless plunging de� ection time history of swept aircraft wing ( K = 15 deg) to
blast pressure signature vs the load factor N for selected values of the speed parameter.

The effect of the mass parameter ¹.´ m=¼½b2
n/, for a swept wing

characterized by 3 D 15 deg, is indicated in Fig. 8. The increase
in the mass ratio results in the increase of the plunging and pitch-
ing displacement amplitudes. Therefore, for higher mass ratios and
AR, the motion damps out at larger times. Note that the response to
sonic-boompressurepulses involvestwo differentregimes (Figs. 9a
and 9b): one for which 0 < ¿ < 30 corresponds to the forced mo-
tion and the other for which ¿ > 30 corresponds to free motion. The
jump in the time history of N (Fig. 9b) is due to the discontinu-
ity in the load occurring at ¿ D 30. For explosive pressure pulses,
where r D 1, this jump does not occur (Fig. 6b). Moreover, when
the sweep angle is increased, the effect of the blast becomes less
severe.

B. Flutter Instability Boundary
The unsteady aerodynamic derivatives, expressed in the Laplace

transformed space, are applied in the � utter analysis, and the results
are displayed in Fig. 10. To validate our approach, a comparison
of the � utter prediction via indicial function of a cantilever metal-
lic swept wing of AR D 4 and 3 D 60 deg is presented. The results
reveal that the predictions provided by the present approach (i.e.,
UF D 256:5 ft/s and !F D 255 rad/s) even in the case of such a low
aspect ratio and large sweep angle wing are in excellent agreement
with those displayed in Ref. 1 (experimental model 15). On the
same graph, comparisonsof the results based on the assumptionsof
Refs. 1 and 12with thosebasedon thepresentanalysisarepresented.
Whereas, in our approach, the camber effect and the corrections re-
lated to the aspect ratio and sweep angle were included, in Ref. 12
these effects are not addressed at all. In Ref. 1 these effects are par-
tially considered. The critical value of the � utter speed is obtained
herein via the solution of both the complex eigenvalueproblem and
from the response analysis. In Fig. 10 the range in which the � utter

instability occurs is determined from the response time histories.
The � utter predictions based on both methods show an excellent
agreement. In addition, to further validate this approach, the � ut-
ter speed of Goland’s28 and Goland and Luke’s29 cantileveredwing
(AR D 6:67/, which constitutes a standard of comparison through-
out the specialized literature,has been evaluated via the present ap-
proach from the response to blast loads. The � utter characteristics
providedby the present approach(490 km/h and 69.12 rad/s), are in
excellentagreementwith Goland’s28 and Goland and Luke’s29 exact
results (494.1 km/h and 70.69 rad/s) and with Ref. 30 (495 km/h
and 70.37 rad/s), in which an exact solutionmethodologywas used.
There is also an improvement of the � utter prediction when com-
pared with the results provided by Patil et al.31 (488.3 km/h and
70.2 rad/s) and with the ones derived by � nite element
codes COMBOF32 (483.1 km/h and 70.81 rad/s), SADSAM33

(472.5 km/h, – ), and state vector34 (486 km/h, – ), where the dashes
indicate that the value of the � utter frequency was not reported.

An original point prompted in this paper concerns the fact that
the evolutionof the aeroelasticsystem can be graphicallyillustrated
by examining its motion in the phase space, rather than in the real
space and by recognizing that the trajectory depicted in this space
representsthe complete time historyof the system(see Figs. 11–13).
The trajectory of motion describes an orbit with constant amplitude
(the center), which corresponds to the � utter conditions that coin-
cide with those obtained from the eigenvalueanalysis. For V < VF ,
as time unfolds, a decay of the amplitude is experienced,which re-
� ects that, in this case, a subcritical response is involved (stable fo-
cal point), whereas, for V > VF , the response becomes unbounded,
implying that the occurrence of the � utter instability is impending
(unstable focal point).

Figure 11 highlights a three-dimensionalphase-space portrait (»
vs P» and N / of the plunging time-history response to blast load of
a swept aircraft wing (3 D 15 deg) for selected values of the speed
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Fig. 12 Phase-plane (»; Ç») and phase-space portraits (», Ç», N) depicting the dimensionless plunging de� ection time history of a swept aircraft wing
to blast pressure signature, for selected values of the sweep angle.

parameter. For Vn
»D 2:12, representing the critical speed at which

the periodic solutionhas been obtained,the occurrenceof the � utter
instability is impending.

Figure 12 shows the phase-plane portrait and the relative three-
dimensional plots (vs the load factor N / for selected values of the
sweep angle 3. With the increase of the sweep angle, the motion
damps out at smaller times, and a decay of the amplitude of the
response as well as of the load factor is experienced.

Figure13 supplies three-dimensionalpictorialviews of theplung-
ing and pitching motions in the proximity of the � utter bound-
ary vs the variation of the sweep angle. These plots provide
a clear view of the evolution of the maxima of displacement
amplitudes.

Note that the methodology presented here can be extended to
the compressible � ight speed regimes. For that case, appropriate

indicial functions for the compressible subsonic, supersonic, and
hypersonic � ight speed regimes have to be used.

In Refs. 35–40, the concept of indicial functions in subsonic
compressible � ow has been developed, and an approximation and
validation of indicial functions for any value of Mach number in
the compressible speed range was obtained. In contrast to the in-
compressible case, the indicial functions in subsonic compressible
� ow are not analytic, except for limited instants of time. Follow-
ing the formulation in Refs. 35–37, a new set of indicial func-
tions, for the plunging and pitching degrees of freedom, can be
adoptedand implemented. Moreover, an advanced structuralmodel
of aircraft wings, as considered, for example, in Ref. 30, can be
adopted for such a study. However, the goal of the paper was not
to illustrate the implications of nonclassical structural features, but
only to develope some basic principles that can further be extended
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Fig. 13 Cone of stability orbits depicting the envelope of the upper
bound values of the dimensionless plungingand pitching de� ection time
histories of an aircraft wing vs K to blast pressure signatures.

and properly exploited to more complex structural wing con� g-
urations.

V. Conclusions
A uni� ed treatment of swept lifting surfaces in time and fre-

quencydomains has been presented,and the usefulness, in this con-
text, of the aerodynamic indicial function concept was emphasized.
The time-domainrepresentationis essentialtowarddeterminationof
the dynamic aeroelastic response to time-dependent external loads.
Two ways of representing the aeroelastic response have been used,
namely, the classicalone, consistingof displayingthe time histories
of plunging, pitching, and load factor, and the phase-space repre-
sentation that provides useful information about the behavior of the
aeroelastic system.

Applications assessing the versatility of the methodology pre-
sented here toward the approach of both the subcritical aeroelastic
response and � utter instability of three-dimensional swept aircraft
wings have been presented. The concept of the stability boundary
and its enhancementvia the useof the variablesweepwinggeometry
havebeen illustrated.The uni� ed formulationpresentedin this work
can be extended to various � ight speed regimes. The method may
have applications toward determination of the critical � utter speed
via the experimental investigationof the aeroelasticresponse of air-
craft wings to pulse loadings. Moreover, it creates the theoretical
basis for a uni� ed nonlinear aeroelastic approach of swept aircraft
wings based on the use of nonlinear indicial functions.

Appendix A: Unsteady Aerodynamic Derivatives
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Here the aspect ratio AR and the spanwise dimensionless coordi-
nate ´ are de� ned as AR D ln=bn cos2 3 and ´ D Ny=l, respectively.
For 3 D 0, the expressions of aerodynamic coef� cients reduce to
those pertinent to straight wings.

Appendix B: Nondimensional Parameters
for Flutter and Response Analyses
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